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Linear time-invariant differential equations have been studied over the past

1. Introduction:

three decades and the stability properties of systems described by the vector
differential equation x = Ax are known to be determined by the eigenvalues of
the matrix A. In contrast, the wealth of techniques available for nonlinear
systems - oscillations, asymptotic behavior, perturbation theory, etc. - reflects
the obvious fact that a broad generalization of one theory is not applicable to
all classes of systems. Even if our inquiries are limited to the two dimensional
case, the volume of detailed work on special systems such as the Vander Pol or
Duffings equations and the work of the Russian school in the early fifties on
absolute stability demonstrates the need to treat these problems individually.
The results of this paper indicate that a profitable generalization of second
order differential equations may be possible when we confine our attention to the

quadratic case:

x x G x
. 1 A
A 0 N e
x x Hx
2
and its generalization
x = Ax + £(x) (2

i
i

which 1s considered in a subsequent paper. Moreover, the insights provided by this
initial study will also aid in the analysis of higher order quadratic systems.

More than being a convenient class of nonlinear systems, quadratic differ-
ential equations have & traditional importance in stability literature. Given

an arbitrary autonomous differential equation x = g(x), g(x) may be
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expanded in a Taylor series if it satisfies certain regularity conditionms.
Lyapunov proved that if the equilibrium state of the linear approximation is
asymptotically stable (unstable) the nonlinear system will also be asymptotically
stable (unstable). However, in the critical case when the linear approximation
is merely stable, the higher order terms must be examined to determine the nature
of the stability of the equilibrium state and interest shifts to an equation of
the form (2).

Recently the special class of bilinear systems
x =Ax + u B x (3)

has received a great deal of attention in the control literature and the princi-
pal results of this theory are influencing the direction of research on general
nonlinear systems. When the control u(t) in equation (3) is a linear function of
the state variables, equation (3) becomes a special case of (2) and the stability
properties of such systems are bound to be of interest to control theorists.
Further, quadratic differential equations are also known to arise in adaptive
control [5] where the control parameters of a linear system are continuously ad-

justed and become state variables of a quadratic system.

= =, In this paper se—undertalp a detailed stuiy of the stability properties of
AA 2

the quadratic differential equation . After observin tga; such sys can
w Liﬂ 44 5.

never be asymptotically stable the equilibriuﬁritatéiyzf A are classified in =~

terms of the matrices G and H. Necessary and sufficient conditions for the sta-
bility of the origin are derived in-eeetien— and constitute the principal con-
tribution of this paper. Finally, these conditions are re-derived and elaborated
using polar coordinates which allow a convenient classification of instability
behavior. This exhausts the stability characteristics (in the sense of Lyapunov)

of gecond order quadratic differential equations.




2. Homogeneous Systems of Even Degree:

Consider a dynamical system in R" defined by
x = h(x) where h(cx) = ckh(x) and k > 1. (4)

The "homogeneity" of h forces the direction of the field to be constant along any
straight line through the origin. The consequences of this simple property pervade
the following sections.

If p(t;xo) denotes the solution of (4) given initial condition p(to;xo) = Xg»

). Now suppose k is even:

it can be easily shown [2] that p(t;xo) = Bp(sk-lt;xo

letting B = -1 we have

P(t;-xo) = -p(-t;xo) (5)

which implies that any trajectory for t 2 0 through x. has an associated trajectory

0
through X, for t ¢ 0 which 1s its reflection. Hence, if Q is a neighborhood of

€ § for some time T > t

the origin and 1xo ¢ 2 but #p(T;x then by (5) the trajec-

o 0

tory p(t;—p(T;xo)) will leave 9 after a Q
finite time and pass through X after

T - t, time has elapsed [Figure 1].

0
This, in tutn,inplies that an even homogene-

ous system can never be asymptotically stable.

With this general observation we set

k= n= 2 and devote the remainder of the &

. -X
paper to the study of x = f(x) in B?- "
Figure 1. Reflection Property of Even

Instability of an Isolated Singularity at the Origin: Homogeneous System

The first direct consequence of the homogeneity property, (4), for the system
(1) is that a second order homogeneous differential equation of second degree cannot

be stable unless its field vanishes on an entire line.
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Suppose the origin is stable: 1i.e. for any ¢ > O we can find a 6§ > 0 such

that trajectories starting in B, - the ball of radius § around the origin - always

§

remain in Bt' From the preceding discussion this system cannot be attractive.

Hence, for any u > O we can find a v > 0 such that trajectories which start outside

Bu never penetrate Bv. Then by suitably choosing v <« © < § < g, any trajectory

A -

starting in Q s B, - B will remain in 2, =B - B for all t > 0, and hence in Q

1 s u 2 € v : 2

(see fig. 2). By the Poincaré-Bendixson (12
theory (3] any autonomous trajectory in a (2‘

closed subset of R2 must be either attracted

to a singularity or must be a closed path.

Any closed path trajectory in Q, must ' //;:j
2 \\yﬂ- 3

cross the line through x_ and the origin

0
in at least two different directiomns. But
this violates homogeneity, hence 52 must

contain a singular point. By construction,

this cannot be the origin. Since f(y) = O,

y ¢ 0 implies f(ay) = O by homogeneity, the Pigure 2.

field must vanish on the entire line through this singular point and the origin.
The next section will investigate the existence of such lines for the quad-

ratic differential equation.

3. Equilibria of Second Order Quadratic Systems:

We now consider the particular class of second degree second order systems

described by (1).

;1 = xTGx
(1)

- xrﬂx

*2
with which this paper is chiefly concerned. We will assume that neither G nor H

is identically zero, and, without loss of generality, that both are symmetric.

From the discussion in the previous section it is clear that the locus of the set
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of critical points of f is crucial to the stability properties of (1). Since
this is completely determined by G and H, well-known properties of symmetric
matrices yield the following exhaustive classification of the types of equili-
brium states of the quadratic differential equation. The field in (1) may vanish

(1) only at the origin

(11) along a straight line through the origin

(111) along two straight lines through the origin.
If either G or H is definite, the system is obviously of type (i). If G and H
are indefinite, but of full rank, the system may be of type (i), (ii), or (iii).
1f G 1s singular and H is indefinite and of full rank (or vice versa) the system
is of type (1) unless H maps the zero eigenvector of G into its orthogonal comple-
ment (i.e. Gx = 0 & xTHx = 0) in which case the system is of type (ii). If G and
H are both singular then the system is of type (1) unless G = oH, in which case
we get type (i1). These cases are illustrated in the following examples:

Example 3.1: G & H full rank, indefinite.

0 1/2 1 0 T
(a) 1f G = and H = , then x Gx = X x, = 0 is satisfied
1/2 0 0 -1
T 2 2
by the vectors and , and x Hx = By W 0 is satisfied by the vectors
1 x Gx
, but = 0 has only the trivial solution. The system is type (1).
1 x Hx
0 -1 O 2 1 0
(b) 1fGC = and H= G = = 4G then and both
2 0 0 1
= xrcx
satisfy x = = 0 and the system is type (iii).
x Hx




0 1/2 1 1/2 T 1 0
(c) If G = and H = » then x Gx = x,x, = 0 for -
1/2 0 1/2 0 0 1
T 0 -1 s 0
and x Hx = xl(x1 + xz) = 0 for . + Hence x = 0 along and the system
1 1 1

is type (11).

Example 3.2: G & H singular.

1 o 6 0 % k
(a) If G = and H = , then A satisfies x Gx = x, = 0
0 o0 0 1 1

1
uniquely, and A\ \ satisfies xTHx = x % 0 uniquely so the system is type (i).

0] 1
= 5 4
1 0 -1 0 0 x Gx
(b) If G = and H= G = then satisfies T
0 O 0 0 1 x Hx
% 2
1
- 2 I" 0 uniquely.
-xl %
Example 3.3: G indefinite, full rank; H singular.
0 1/2 Lol 1 0 T
(a) 1If C= and H = then and satisfy x Gx = xlx2 =0
1/2 0 3 ISl 0 1
3 T 2 2
and satisfies x Hx = X + 2x1x2 + x, = 0 uniquely, hence the origin is the
-1
only equilibrium,
0 1/2 0 0 1
(b) 1If C = and H = then » the zero eigenvector of H,
1/2 0 0 -1 0
0
is mapped by G into - its orthogonal complement. The system is of type (1i).
1/2

In summary, the necessary condition of a zero line stipulates that stable

systems must be of the kind 3.1.b, 3.1l.c, 3.2.b, 3.3.b. Sufficient conditions

are derived in the next section.

———— -
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4. Stability of Second Order Quadratic Systems:

From the discussion in section 2 it follows directly that any quadratic sys-
tem of type (i), with a unique isolated equilibrium at the origin, is unstable.
In this section we shall further refine necessary conditions and finally arrive
at conditions which are both necessary and sufficient for stability. This is most
easily accomplished by first deriving a special form for f(x) in (1) that charac-
terizes systems of type (ii) and (1i1).

Quadratic Differential Equations with Non-isolated Equilibria:

If the origin is not an isolated equilibrium (i.e. if the system is not of
type (1)) then let llell = 1 and f(e) = 0 (or eTGe = eTHe = 0). By homogeneity (4)
we know the whole line e (A € R) is a set of critical points of f. Now define a
new coordinate system by the orthogonal transformation y = R?x where R g [efc]

(lell = llc|l = 1 and .o 0). Then

T
y Py
f(x) = £(Ry) =
T
y Qy
0 eTGc 0 eTHc
where P= and Q=
cTGe cTGc cTHe cTHc

T
Hence we can factor a Y, = ¢ x out of both quadratic forms to write

f(x) = ch Dx )
ZeTGc cTGc T cTG 2 0 T
where D = T T ={--p=—|R R
2e He ¢ He cH 0 1

Equation (7) expresses the fact that any quadratic system whose field vanishes

along at least one line has solutions which are associated with a linear system

z=8Dz (B ¢R) (72)
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Given a fixed initial condition, Zg the solution of (72%) for any constant B is

]
Detz , thus z, (t) = z, (1) where t = —l~t. In other words, the trajec~
0 Bl 82 82

tories of (7%) cut out identical manifolds in Rz for each B, although their time

za(t) - e

parametrization on these manifolds is dilated or contracted by an appropriate

constant. More generally, if we are given

: x = B(t)Dx (7t)
DJB(T)de :
0 0
g(t) given initial condition x0 will be contained in the same manifold as z_(t);
t
however, its time parametrization will be varied by the function J g{t)dt. Thus, if
0
we think of (7) as a particular case of (7t) where B(t) = ch(t;xO) has been com-

then x(t) = e Again, the solution of (7t) for any scalar time function

puted a priori, then we see that all trajectories of the quadratic differential
equation with a non-isolated set of equilibria must lie on manifolds determined

by the linear system (72). With this observation in mind, we may now extend neces-
sary conditions for stability by considering different classes of linear second
order time-invariant systems. Specifically we will examine the nature of (7) when
the equilibrium state of the linear system (72) is a node, center or focus.

a. D singular:

Suppose D = ka -~ a singular matrix. Then (7) may be re-written as

x = [bech] k (8)

The symmetric part of bcT is indefinite when b # c¢c. In this case (8) is of the
form ; = k xTGx. hence G = kzlkl H is indefinite and from the discussion in section
3 this is the only possible occurrence of a system type (iii). Clearly this equa-
tion defines a field whose direction is uniformly specified by the vector k and

vwhich vanishes on the two lines Ae,, le, (Ae R), satisfying eiTGei- 0. If k Gk #0

1’
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then either p(t;k) or p(t;-k) will tend to
infinity along the vector k (or -k) as ’
t + « gince xTGx has the same ‘.‘“(

¥ = A(t)k '
sign for t 2 to. This is illustrated in / ’
figure 3.a.
e
A more interesting case arises when 1
xTGx = 0 is satisfied on the line determined
by k. Let r also satisfy this equality
(r ¥ k) and choose the four points Figure 3.a. Type (ii1i): two zero lines
unaligned with field direction.
p = tktar (o € R). The field vector at these points is either in the positive or
negative direction of k as determined by pTGp = ZakTGr or -ZukTGr. If « > 0 and
we assume kTGr < 0 (note kTGb # 0 since
k # b) it follows immediately that
p(t;k - ar) + » in the direction of k,
and p(t;-k - ar) » «» in the direction
of negative k as shown in figure 3.b.
If kTGr < 0 then the alternate pair of

trajectories is unstable. This exhausts

the possible occurrences of type (1i{i)

equations. Hence necessary conditions

for stability have been extended to ex-

clude all but systems of type (ii) - with
Figure 3,b. Type (iii): field direction

a single line of equilibria. aligned with one of two zero lines.
The remaining case of singular D occurs when the matrix bcT in (8) is symmetric:

if.e. b=c. If k ¢ c, then either p(t;k) or p(t;~k) follows the line determined by

k to infinity. If k = ¢, then equation (7) may be written x = ¢, xchTx and every

trajectory which has non-zero motion tends to infinity in the direction cl as shown

in figure 4.
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b. D Non-Singular with Real Eigenvalues:

If the equilibrium of (72) 1s a node

(1.e. the eigenvalues of D are real and

non-zero) then its associated quadratic

system (7) must be unstable. If D has
an eigenvector, k, which is not orthogonal

to ¢ then either p(t;k) or p(t;-k) must

tend to infinity in the direction k. This
is illustrated in Figure 5.a. If no such Figure 4. Type (ii): field direction
aligned with unique zero line
k exists then D must be non-diagonalizable
and cl its only direct eigenvector. 1In

this case, since all manifolds of (72)

intersect the equilibrium set of (7) only

once (excluding, of course, that set itself)
as depicted in Figure 5.b, and since the
solutions on these manifolds are mirror
reflections across the origin (from section

2), trajectories on one side of the zero

line of (7) must tend to infinity. Figure 5.a. Type (i1): Pure Nodal

By this argument we have excluded all g

systems of form (7) whose D matrix has real
eigenvalues. Thus the following is a state-

ment of the refined necessary conditions:

the quadratic differential equation (1) is
stable only if its field vanishes on a

single line through the origin and its

assoclated linear system (7%) exhibits

center or focus (whether stable or unstable) Figure 5.b. Type (ii): Partial Nodal
Behavior
behavior, We will now demonstrate that this condition is also sufficient.
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¢. D with Complex Conjugate Eigenvalues:

If the solution manifolds of (7%) intersect every direction on the plane at
a finite point at least once then, recalling the condition from section 2 that
every trajectory of (1) must be contained in a half plane we might suspect that
(7) is stable when D has complex conjugate eigenvalues. In this case, the con-
taining half plane is defined by the zero line c, and the solution to (7) is
trapped on a half loop of the spiral or circle defined by the solution of (72).
This can be argued more formally. Define L(xo) g {y ¢ Rzl(t < @) (y = eDtxo)}
~ the manifold cut out by a particular solution of (7&) given initial state Xys
and the half plane P g {y € RzlyTxo > 0k, If p(t;xo) is a solution of (7) then
*t) p(t;xo) € L(xo)nP. Since (1) is well behaved, the fact that L(xo)nP may be dis-
connected is of no concern~we assume that p(t;xo) lies entirely on the branch, A, of
PnL(xO) which is connected to Xy Clearly A is contained within the closed half-annulus

of radiuslk ||*+6 for some constant §. Having ruled out the possibility of closed

J
paths we must have (by Bendixson Theory) p(t;xo)—a»;, ; € BFI?;ET. Inspecting (7)
it is obvious that ; l1ies on the line orthogonal to c. Hence for an arbitrarily
small ¢ > 0 we can always choose onllsmall enough to obtain p(t;xo) € Be(Vt > to).
The system is stable. Since (1) is homogeneous any stability characteristic must

be global. Hence we have the following:

Theorem: The second order quadratic differential equation (1) is globally stable

if and only if it is of the form

. T
x = ¢ xDx

and the eigenvalues of the matrix D are complex,

0 1/2 -.76 =~.15 : T 1
Example: If G = and H = then x = ¢ xDx with ¢ =

1/2 0 -.15 0 0

g L
and D = . Since the eigenvalues of D are complex the system is stable.
-.76 ~.30

The system was simulated and results are plotted in Figure 6.a.

0 1/2 -1 0 ¢ T 1
Example: If G = and H = then x = ¢ xDx with ¢ =

1/2 0 0 0 0
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0 1

and D = . Since the eigenvalues of D are imaginary the system is stable.
-1 0

The system was simulated and results are plotted in figure 6.b.

5. Global Behavior of Second Order Quadratic Systems:

Results of earlier sections indicate that most quadratic systems are unstable.
Hence the derivation of necessary and sufficient conditions for stability cannot
address the qualitative behavior of the solutions in most instances of equation (1).
To f1ll this gap, and since the investigation of instability behavior is an intrin-
sically important component of any stability analysis, this section will be con-
cerned with the classification of the global properties of second order quadratic
systems.

a. Polar Coordinate Representation:

For the purposes of this investigation it is most convenient to express equa-
—— x
A
tion (1) in polar form. Using the transformation p = /;i + xg, © = arc tan ;Z we
1

may write

= 1/p(x1x1+x2x2)

Ve

= 1/92(x X 2121)

1%

De

-X
- £ b T A 2
where x, =x Gx and X, = Xx Hx from (1). If we define g(v) = 8,V + 8oV + 8, and

A *
h(v) = h2v2 + hov + hl' and let © ¢ (-n/2,m/2) then this may be re-written as

5 = pz cos3 O[g(tan ©) + tan © h(tan 0)]
9)

De

=p cos3 O[h(tan ©0) - tan © g(tan 0)]
Recalling from section 2 that the solutions of (1) behave symmetrically across any
line through the origin, it is clear that there is no loss of generality in re-

stricting © to the given open interval.

*
8, 1/2 8o hy 1/2 hy
Let G = and H =

1/2 g 8
0 2 1/2 ho h,
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Once again, the stability analysis of (9) requires an identification of its
equilibrium states. If p = 0, then 5 - 6 = (); the abscissa in the new coordinate
system (the origin in (1)) 1s an equilibrium set. For p ¥ 0, the equilibrium

states of (9) are completely determined by 0, which is a direct consequence of
x

homogeneity. Parametrizing the open right half plane by the scalar v e tan O = ;3 =
1
the critical points of (9) are obtained by simultaneously solving the equations
r(v) & g(v) + vh(v) = 0
(10)

p(v) & h(v) - vg(v) = 0

where r or p (or both) are cubic polynomials in v. In the sequel we will assume
that p is cubic: 1i.e. g, # 0 with no loss of generality. (If g, = 0, a new
Cartesian system may be chosen by an orthogonal transformation. This is equiva-
lent to the choice of a different parametrization of ©). Thus p(v) = O must have
either three real roots, two real roots (one with multiplicity 2), or a unique real
root.

The following result summarizes the character of solutions of (10), and, hence,
the equilibria of (9).
Lemma: v, 1is a real root of (10) 1f and only if it is a real root of the simultane-
ous equations g(v) = 0, h(v) = 0.
Proof: The forward direction is trivial. To prove the converse, assume that Yo is

a real root of (10) (i.e. r(Vo) =0= p(vo)), but g(vo) # 0. In this case we have

hivg) -1
E?;;) "Wy ;; : 1.e. v, must be purely imaginary - contradiction.

By this lemma, (10) must have either (i) no solutions, (ii) one solution, or
(111) two solutions, with the following characteristics:
(1) If equation (10) has no solutions, system (9) has the trivial equilibrium

set p = 0. However, since p is cubic there must be at least one real Yo such that
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h(v,)
P(vo) = 0. For any such roots the relation E?;SS-- vo must be true.
(11) If equation (10) has a single solution Voo then system (9) has an equili-
brium set along the single line O = arc tan vo. If p has other distinct roots, then

they cannot be roots of g by the lemma: hence the relation 2%%% = v must be satis-~

fied at these points. If Yo is the unique real root of p then the relation : : = v

is never satisfied for v ¢ R. (Unless Yo has multiplicity 3 in p).

(111) If equation (10) has two distinct solutions Yo and v6 then system (9)
has equilibria along two lines O = arc tan Yo and © = arc tan v6. Sinﬁivg)is cubic
and must have a third root, v, which cannot solve (10), the relation ET3§Y = Vg
will hold.

It is clear that these three cases correspond, respectively, to the three types
of equation (1) identified in section 3. Using the results of section 4 we may
immediately see that the necessary and sufficient condition for stability is given

by the second alternative of case (11). This may be confirmed independently as

follows.

Stability Analysis of Polar Form:

Assume case (11) holds and v, 1is the unique real root of p(v) = 0. Then for

0
some 0 < M < =, =M g EAV ¢ M. Hence, from (9), we have 6 = oEﬁ!l é < pHé. Since
p(v p(v)
p 2 0 we may write
d P
gc e <M 3t (11)

Now, factoring p(v) = (v-vo)p'(v), we must have p'(v) bounded away from zero.

If p' is always negative let ¢ s © -06,, if p' 1s positive, then let ¢ 4 0 - eo - ¥,

0’
Then (assuming the former) we have

%% = p(t) 6002(0"’90)9'[CN(WO)]ECM(O*GO) - vo) cos(o*eoﬂ

or, multiplying the polynomials in tan O through by cos ©

48 o [sin(er0y) - vy cos(¢+0,)]a(t,0) (12)

de (-eo-w.-eo-o-n)
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where a(t,0) is a negative definite function. Since ¢[sin(¢+60) ~v cos(¢+60)] 20

0
equation (12) is an asymptotically stable scalar system, and ¢(t) - O for all initial

conditions 00 c(—Oo-w,-00+ﬂ).
Since &n p is a positive function, the stability of (12), and the majorization
in (11) forces the boundedness of %n p. Of course &n p is bounded if and only 1if p

is bounded. Then 1if %{%% = v does not hold for any v, equation (1) is globally

stable.

Conversely, it may be similarly demonstrated, independent of the analysis in

section 4 that all remaining cases of equation (9) are unstable. Recall that in
h(v,)

each remaining case there exists at least one real v, such that ———— = v_ and
0 g(vo) 0

&
r(vo) # 0. Then for initial conditions (0.90) when ©_ = arc tan vy» System (9)

0

may be re-written as:

5 - 92 cos3 00 r (tan 60)
(13)

=0

which is a scalar quadratic system. Since p > 0, equation (8) has bounded solutions

if and only 1if cou3 0. r (tan 00) < 0. However if this is the case then cos3 (oo + 1)

0
r[tan(eo + m)] > 0 and p(tan (eo + 7)) = 0. Hence initial condition (p eo + m)
’

also yilelds equation (13) and has the solution

1
p(t) = =3 cos (0, + T)tan Oyt - o

which escapes to infinity in finite time.
In summary, we have re-stated the necessary and sufficient conditions for sta-

bility of equation (1) in polar form: system (9) is stable if and only if there is

h(vo)
no vo ¢ R such that ;(-‘707 = vy
of P tes S :

The crucial equation 2{%% = v is intimately related to the quadratic operator

in (1): the existence of a real Yo to solve that equality is equivalent to the

* Excluding the case where the equality holds at vo.and o is simultaneously a
triple root of p.

Se———
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%
existence of a non~zero fixed direction of f.

xTHx Ax »
Supposc f(x_ ) = Ax (A # 0, x, ¥ 0). We have s 02 . _02
. " 0 T Ax X
xGx 01 01
. 0770
- h(;—z-) x h(V )
Buc XTHx & xl A Hence let tins vo Q __9_{ we have ( 0) = Voo
. (_—2.) x01 8 Vo
8 xl

The converse, while strongly suggested by the condition 5 $0, f = 0 1s immediate

if we recall the identity

dx

. .
~N
N

m

x
[u
[

x(0) = Xy
2

where xz(xl) is a local parametrization of the phase curve {p(t;xo)lt > 0} inR".

Namely, the ratio of the time derivatives specifies the slope of the tangent line of

h(v,)
the manifold on which a solution lies. Then the condition ‘7;97 =5 is equivalent
dx x 0
b GG | @ >
to the condition dxl e and trajectory p(t’[uv J)lies on the line Xy = VoXy©

1
u.]> and since r(vo) # 0 implies o ¢ 0, we must have A ¥ 0.
0

e e

Necessary and Sufficient Conditions for Stability:

In summary we have shown that the following statements are equivalent
(1) Equation (1) is globally stable.
(11) f(x) = chDx and D has pure complex eigenvalues.
Stability: h
(111) The equation E%¥% = v has no real solutions.
ok
(iv) The quadratic operator f has no non-zero fixed directionms.
and are mutually exclusive of the set of equivalent statements
ok
(1) Equation (1) has a finite escape trajectory.

(11) £ is type (1) or D has real eigenvalues.

Instability: h(vo)
(111) There exists a v, € R such that ——— = v_.
0 g(vo) 0

*
(iv) The quadratic operator f has a non-zero fixed direction. .
* Excluding the case where the equality holds at v,, and Yo is simultaneously a
triple root of p. (see next footnote)
**% Excluding the situation where f(x) = ¢ xDx, D has a double real eigenvalue, and
the only eigenvector of D is on the orthogonal complement of c. This is unstable,
as shown in section 4. It is equivalent to the condition that vo is a triple root

of p in case (11).

o i g+ M s

— SO — DE—
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b. Classification of Unstable Quadratic Systems:

Having reiterated earlier results using the polar coordinate transformation,
we will now clasaify the various types of instability behavior solutions to system
(1) may evince on the basis of their associated phase curves.

It has already been established that the solution manifolds of type (ii) and
(111) systems given by equation (7) (i.e. where f(x) = chDx) are identical to those
which are associated with the linear system (7%).

z = 8Dz (7%
It 1s well-known that system (7%) may possess nodal, focus, or center characteris-
tics. In the case of focus or center behavior of (72) we have demonstrated that
(1) 1s stable. Otherwise the trajectories of (7) follow half the nodal manifolds
(72) to the origin, and the other half out to infinity, with trajectories starting
on an eigenvector of D escaping to infinity in finite time, [Figures 3-6].

On the other hand, we have said very little about the trajectories of systems
of type (1). Again, it is more convenient to examine the solutions of (9) than to
attempt an immediate analysis of the Cartesian system (1). The tangent slope of

phase curves in the (p,0) plane is given by

Adp _ r(tan0) _ g(v) + vh(v)
U) =36 “° p(ean 8 ~ ° h(v) - va(v) Ve

The poles of q correspond to the values of v such that 2%%% = v as established before.
The significant characteristics of the manifolds of (1) are determined quite easily
by a glance at the sign of q in the neighborhood of a pole. If Yo is a single root

of p(v) = 0 then q(vo + c)q(vo -€) <0. If q(v0 + €) > 0 then solution manifolds

on the (p,0) form a negative cusp around the line © = arc tan v, a8 shown in

figure 7.a. If q(v0 4 €) < 0 then solution manifolds on the (p,0) plane form a
positive cusp around the line © = arc tan Vo a8 shown in figure 7.b. If Yo is a

double root of p(v) = 0 then q(vo + ;)q(vo - €) > 0 and the solution manifolds will
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Vo -€
have positive (or negative) slope on both al 0-€)>0
q(vyt€)>0
sides of the line © = arc tan v0 as shown
P
in figure 7.c.
Loops and Flows: |
In the light of the above observations,
]
a rough translation of figures 8 into the
arc tan v,
Cartesian plane convinces us that the proto-
(a) POSITIVE CUSP
typic behavior of system (1) type (1) falls
into two distinct classes. The trajectories
-€)<0
must be separated by at least 1 and up to 3 q(v° ¢
q (vo+€)>0
separatrices:the fixed directions of the map p
1
f as determined by the zeros of p. If f has !
1
a unique fixed direction, then the solutions i
)
of (1) must correspond to either figure 7.a 1
|
or 7.b. In the (xl.xz) plane these proto- H
arc tan v,
types are given by figure 8.a or 8.b which
we will call the "loop" or "flow" prototypes (b) NEGATIVE CUSP
respectively. If f has two fixed directioms,
then p must have one double root. In this q(vp-€) >0
case, one fixed direction will have either P 9 (vo+€)>0
the loop, or the flow characteristic, and
the other will have the special feature
depicted in 7.c. The solutions in the (xl,xz)
plane retain either a flow or a loop character
arc tan v,
as shown in figure 8.c (flow dominant) and
8.d (loop dominant). Finally, if f has three (c) MIXED

fixed directions, p must have three roots and

Figure 7. Characteristic Manifolds

each root must evince either pure loop or flow on the Polsr Plans

characteristics.

P
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Illustrative examples of these cases
are now given:

Example 5.1.a. Flow with one fixed direction:

0 0 1 0
Let G = and H = . Then

0 1 0 0

g(v) = vz.h(v) = ] and r(v) = v(v + 1),

pv) =1 - v3. The system is type (i)

since g and h have no common factors. The

cubic polynomial p has a single root at v =1,

1
hence the direction [' is invariant under

1

f. The ratio g(v) = :(v

e is positive in

the left-hand neighborhood of 1. Hence the
tangent lines %% are given by figure 1.b.

The actual system was simulated on the digital
computer and results are plotted in figure 9.a.

Example 5.1.b. Loop with one fixed direction:

1 1/2 -1 1/2
Let G = and H = .
1/2 -1 1/2 1

Then g(v) = -(vz-v-l), h(v) = v2+v-1) and
r(v) - v3 + 1, p(v) = v3 - 1. Again the

system is type (1), and p has a unique root
1

v =1, The vector is again fixed under
1

f. Now, however, the ratio q(v) is negative
in the left-hand neighborhood of 1. Hence %%

is given by l.a. The actual system was simulated
on the digital computer and results are plotted

in figure 9.b.

a) Flow

b) Loop

S LA

g

¢c) Mixed - (Flow Dominant)

d) Mixed - (Loop Dominant)

Figure 8.

Flow and Loop Characteristics
of Trajectories
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¢. The Stability of Off-Origin Equilibria:

In the preceding discussion a polar coordinate transformation elucidated the
analysis of the global behavior of equation (1) with respect to the origin. To
complete the investigation of global behavior an account of the stability properties
of other equilibria are presented here.

Systems of type (1), with no other equilibria than the origin have been treated
in the previous subsection. For the two remaining types, recall from section 4

that equation (1) may be expressed using equation (7)

i = chDx
where D is either of full rank or singular. In the former case the system has a
unique line of equilibrium i.e. x = c, . In the latter case the system has two lines

of equilibria which satisfy x = ¢, and Dx = 0 [a special case occurs when these two

l1ines coincide].

Systems of Type (iii):

If D is singular, it was shown in section 4.a that equation (7) can be rewritten

as equation (8):

. T
x = kx Gx

This is type (iii) if and only if G is indefinite and of full rank. As explained
in that discussion solutions lie on parallel lines in the direction k. These, in
turn, correspond to the solution manifolds of a singular linear system whose unique
non-zero eigenvector is k. Superimposed on this field is the equilibrium set speci-

fied by the two distinct vectors e and e, for which xTGx =0 ({1 =1,2) is
x=e
i

satisfied. In appendix 1 we present a formal analysis of the perturbed motion

around the equilibria le, and Aez. A e R.

1
1f k ¢ e (1 = 1,2) then either positive or negative open half line (i.e. ex-
cluding the origin) contains stable equilibria and its opposite closed half line

(1.e. including the origin) contains unstable equilibria. Each stable half line




=%

is a locally attractive invariant set. This situation is portrayed in figure 3.a
(section 4).

If k = e then the direction of the field is itself a line of equilibria, all
of which must be unstable. In this case, the remaining line of equilibria has an
open half line of stable and a closed half line of unstable points. The unique
stable half line is a locally attractive invariant set. This situation 1is portrayed

in figure 3.b (section 4).

Systems of Type (4i):

As established in section 3 if D 1s nonsingular (or singular and possesses a
zero eigenvector in the direction orthogonal to c) then the system is type (11).

Again the solutions lie on manifolds determined by the associated linear system

2 = Dz
interrupted by the zero line. In appendix 1 it is formally shown that in all cases
there must be a half line of stable equilibria (excluding again the case where the
only eigenvector of D is orthogonal to c). The half line is closed if and only if
D has purely complex eigenvalues. This line is a locally attractive invariant set.

Two representative systems are depicted in figures 5 (section 4).

e
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Appendix I: The Stability of Off-Origin Equilibria
Recall that system (1), X = f(x), may be re-written as equation (7),
x = chDx, if there are any off-origin equilibria. Around an arbitrary equili-
brium state, Ae(eTc = 0 and ) € [R),the perturbed equation of motion z = f(e + z)

- f(e) may be simplified and written as:

. T
z = ¢ zDle + cTzDz

- *
Define the matrix R = [De.e] and the change of basis y = R 1z. -.W

3
. -1 T - -
Then y= AR "Dec Ry + R 1DRycTRy. Since cTR = [cTDe,O] and R 1De = -}we may
0

re-write the last equation as
1
. T -1
y = Xylc De + R "DRy (A.1)
0
Fact: System (A.l) is locally stable if and only if XcTDe < 0 in which case the
line yl = 0 is an attractive set.
T 2 . B 2 2
Proof: If Ac De > 0 let v = vy Then v = Ac Dey, + y10(y ). Since v > 0 in the
region v > 0 for small enough values of uy”, the system is unstable by Chetaev's
theorem.
T T . i 2
If Ac De < 0, let v = 1/2y y. Then v = Ac Deyl + ylo(y ) which is negative
semi-definite in a small enough neighborhood of the origin,Q. Since v is always
on {xl # 0}nR we know {x1 = 0}nl is attractive. Since the equation of perturbed
motion about any point in {x1 = 0} 18 of the form (A.l), the same argument works
on the entire line.

If the system is type (iii) then using equation (8) we know
x = kx'0x = kx bd'x (8)

Thus the matrix D in (7) may be either ka or de with ¢ = d or ¢ = b respectively.

If k ¢ dl and k ¢ b1 then AcTDe < 0 for either A < 0 or A > 0 using either form of

*
0f course this is not possible if De = le. In this case, either choose the

second zero line (if the system is type (i1i1)) and perform the identical
analysis, or if the system is type (ii) then there is no attractive half line.

(see second footnote on p. 16).

o . 3585 G A
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D. Thus there are two attractive open half lines. If kl- d or kl- b then

CTD. = ) for one choice of D. Hence there is only one open attractive half line.*
If the system is type (i11) then the matrix D in equation (7) is unique and

either nonsingular or equal to ccT (see section 4). If cTDe ¢ 0 then there must

be an attractive half line (open or closed depending upon the stability of the

origin of course). Notice cTDe = 0 only if e is the unique eigenvector of D*

(see footnote on previous page).

0f course this is not possible if De = le. In this case, either choose the
second zero line (if the system is type (iii)) and perform the identical
analysis, or if the system is type (ii) then there is no attractive half line.

(see second footnote on p. 16).




=2k

Acknowledgment

This project was supported in part by the Office of Naval Research under

Contract N0O0O14-67-A-0097-0020, NR 375-131.

(1)

(2]
(3]

(4]

(5]

References

Frayman, Morris, Quadratic Differential Systems: A Study in Nonlinear
Systems Theory (1974), Doctoral Dissertation, University of Maryland.

Hahn, Wolfgang, Stability of Motion, Springer Verlag, Berlin 1967.

LaSalle, J. F. and Lefschetz, S., Stability by Liapunov's Direct Method
with Applications, Academic Press, New York, 1961.

2 2
Lyaghina, L. S., "The integral curves of the equation y1 = EE-tEIXtEXI,"

dx2+exy+fy
Uspekhi Mat. Nauk, VI, 2(42) 171-83, 1951 (Russian).
Luders, G. and Narendra, K. S., "Lyapunov Functions for Quadratic Differ-

ential Equations with Applications to Adaptive Control," IEEE Trans. on
Auto. Control, Dec. 1972.

- e -~ - - —- , st i e

.

S ———



